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I. INTRODUCTION

Conventional automatic control has made significant
accomplishments in industrial and military applications. This
type control 1is the design of control systems to determine the
compensation necessary to fulfill a certain set of require-~
ments. The most common requirements are values of gain margin,
phase margin, M-peak, rise time, settling time, peak overshoot,
integral square error, and mean square error.

FPollowing many years of activeidevelopmqnt, conventional
automatic control system design appears to be approaching a
saturation point which, 1n'turn, is encouraging the develop-
ment of new theories of control. Perhaps the greatest impetus
for this change has been the computational ald supplied by
modern digital computers. Some of the new mathematical
techniques in the developing theorlies, such as dynamic pro-
gramming,’are impractical without the speed and‘capacity for
calculations now available.

 The new techniques in control system design usually use
the differential equations that describe the process mathemat-
ically as a means for predicting what will happen in the
future. Then the predicted values are used to determlne
present control inputs or sequence of inputs. Thls mathemati-
cal technique is commonly referred to as the "state variable

technique" by control engineers. The value of a state 1s



usually the value of the variable in a flrst order differen-
tial equation describing a portion of the process. If the
process 1s described by an nth order differential equatlon,
then it has n states which are normally determined in the
control problenm.

The digital computer 1s not only alding in the develop-

" ment of such new theorlies but also is practlically and, Just
as important, economically implementing the theory by acting
as an element in the feedback loop of the control systems.
The economic advantage has resulted from two sources: flrst
the cost of the computer hardware has declined to reasonable
values for use as control elements, and second the hardware
and software for computers has developed so that a single
computer can be shared by a number of different, otherwlse
unrelated, experiments.

The purpose of thls dissertation 1s to determine when
attention 1s necessary for the control of an experiment from
the computer which is shared with other_experiments. To allow
investigation of the dynamic behaviér of a process a unit
block which represents a first order differential equation has
been selected. Using deterministic inputs as driving func-
tions the characteristics of the unit block are determined for
a varieiy of inputs. A process system 1s investigated by
bullding up the complete system from the unit blocks. The
state vafiable technique predicts the output of a unlit block
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exactly with a'plecewise constant input and approximately with
a time-varying input.

The error and deviation design curves for a number of
different deterministic inputs to the unit block are used in
the deslign of a multivariable control system for a nuclear
physics experiment. A sample i1s irradiated in a nuclear
reactor, and the decay characteristics of the radloactive
atoms produced are examined. The sample is solld, but through
controlled heating 1ts vapor is continuously removed from the
reactor and inserted into the ion source of a mass isotope:
separator. The mass 1sotope separator separates the radio-
active atoms from the pareﬁt atoms so that the decay charac-
teristics can be investigated. The control requirement is to
} supply the same number of atoms in a continuous stream from
the reactor as are decaylng at the isotope separator target.
The system 1s described by a set of nonllnear differential
equations.uith time~-varying coefficlents and trénsport lags.
The set of differential equations representing the system can
be uncoupled to allow sequential solution of subsets that are

linear.



II. REVIEW OF LITERATURE

Prior to 1950, little was published in the area of
analysis and design of sampled-data systems. Digltal comput-
ers were 7irst used in control systems and later used in
complex automatic tracking systems for satellites in space.
The new emphasis on sampled-data systems has resulted in books
devoted solely to the subject {12, 16, 18, 19) instead of
chapters in the back of books otherwisé devoted to contlnuous
control systems.

The design and synthesls of sampled~data control systems
can be divided into several categories. To ald in developling
the ideas for this dissertation, the categorles here are
designated instantaneous feedback control systems and prédic-
tive control systems. The instantaneous feedback control
system compares the present condition of the output to the
desired output and makes a correctlon to the system. The pre-
dictive control system, using the lmmediate system condition
and the expected inputs, predicts whet the output will be at
some future time and makes a correction as soon as possible
followilng the calculations.

The instantaneous feedback control system was developed
first as sampled-data systems came into common use. The most
popular technique used to analyze these systems is the Z-

transform method (3, p. 272). The use of the Z-transformation
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for sampled-data. systems is entirely analogous to the applica-
tlon of the ILaplace transformation to continuous-data systems.
Most of the techniques used for solving linear continuous-dats
systens, such as the Nyquist erlterion, root locus dlagram or
Bode dlagram, can be modified and extended to the studies of
linear sampled-data systems (12).

The predictive control systems predict the state of the
system at some future time using difference and state varliable
equations derived from the differential equatlons describing
the physical system. In some sampled-data system design books
(16) no distinction is made between the state of a difference
equation that is an approximation to the solution of the dif-
ferentlial equation and the state variable equation that is an
exact solution to the differential equation. A careful docu-
mentation of the history of the state variable method as
developed by both mathematiclans and engineers has been made
by Fuller (5).

Kalman and Bertram (10) have presented a general synthesis
procedure for using the state variable technique in the design
of a control system. However, the final control system uses
present values of the states for control of the system. Use
of the state wvariable technique in the design allows the opti-
mum choice of linear combination of all of the states to be
fed back to the input. Once these feedback terms are deter-

mined the system works a8 an ordinary multiloop feedback



controller. The authors do suggest that transport lags may be
handled in the system using prediction. The digital computer
is used for solving the prediction equations after each sample.

Dynamic programming theory applied to the optimum design
of digital control systems (1, 2, 19) uses prediction by the
state variable method 1n a multistage decislon process to |
maximize the total return for a system, A systematic solution
procedure may be derived Ly making use of Bellmen's (1)
Principle'of Optimality which states that "an optimal policy
has the property that whatever the initlal state and the
initial decisions are, the remaining deéisions must constitute
an optimal poliecy with regard to the state resulting from the
first decision." This approach implies that to solve a speci-
fic optimization problem the original problem is lmbedded
within a family of similar problems. The original multistage
optimization problem 1s replaced by a sequence of single-stage
decision processes which are easier to handle. The disadvan-
tage 1s in checking all possible sequences of inputs to obtain
the optimum cne from each succeeding state. _The number of
possible paths increases with each succeediné stage. Oonsid-
erable computer storage 1ls required to check every path and to
allow a cholce of the one which fits most satisfactorily the
particular system.

A predictive control system utillizing dynamlic programming
has been designed by Chestnut, Sollicito and Troutman (4)
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using a two-le#el "bang-bang" type servo. The number of
possible branches of input sequences are reduced considerably
when Just four inputs are all that are avallable for choice.
The input variable operating the controlled system is actuated
by an estimate of the error which will exist at some future
time. Repeated estimations of the future error are obtained
by predictiﬁg ahead, on a fast time base, both the reference
and the controlled variable as well as some of their'lowar
order derivatives. The input signal is switched at the time
when the predicting computations defermine that future syn-~
chronization of reference and output would occur if polarity
of the input signal were sﬁitched at that time.

The state of a linear system can theoretically be changed
- to any other desired state by putting an impulse into the
state. Sufficient energy must be given by the impulse to the
system in zero time to change the state. Optimum control 1is
no longer a multistep requirement but can be obtalned in a
single step at any time. Gupta and Hasdorff (6) have made the
technique practical by assuming that the input is a combina-
tion of a Gaussian (normal) shaped function aﬁd its deriva-
tives. The normal function in the 1limit as the standard
deviation goes to zero is the impulse function. With the
normal function the energy does not have to be delivered in
zero time. A basic difficulty is generating these normal
functions, but it is at least possible. The time required to



change the state 1s a function of the standard devliation which
is made as small as possible.

In many sampled-data control systems signals are sampled
periodically, although this type of sampling may not always be
possible and in some situations may not be desirable. The
introduction of aperlodic sampling may even improve the systenm
stability (12, p. 370). Recently a great increase of interest
has occurred 1in systems in which the sampling operations may
not be performed synchronously. Attempts have been made to
modify and use some of the methods for handling nonlineﬁr
control systems such as describing functions or modifying the
Z-transform (9). These methods lead to complex analysis for
even simple systems.

Kalman and Bertram (11) have made & major contribution
in sampled-data analysis and control by showing how the state
variable technique can handle sampling systems of a general
type in a clear and uniform way. They claim that the method
Yields simplificatlons even in the analysis and synthesls of
conventional periodic sampling systems. The method auto-
matically eliminates one of the chief difficulties of the
transform method, namely that 1t 1s difficult or cumbersome
to obtain information about the behavlior of the sjstem at any
time other than the sampling instants.

In thelr general theory, Kalman and Bertram give a very
broad intultive definition of the state of a dynamic element
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as “a set of nﬁmbers (called state variables) which contain as
much information regarding the past history of the element as
is required for the calculation of the entire future behavior
of the element." The evolution of a dynamic system through
time may be visualized as a successlon of state transitions.
Since each transition is independent of everything except the
present state and the input during the present transition,
then the non-uniform sample period is handled as easily as the
uniform sample period. An important characteristic of the
state variable technique is that design effort is on the analy-
tical aspects of systqm problems with the drudgery of numeri-
cal computations necessarily left to be performed by a digital
coﬁputer. The computations performed by the digital computer
after a sampling instant are usually quite short compared to
the time dbetween two samples. Since this time 1s usually also
short compared to the time constdnts in the system dynamics,
the delay caused by the computations may be disfegérded alto-
gether. |

For simplicity, Kalman and Bertiram use saﬁﬁle and hold
elements and assume that the input to the sy?tem 18 plecewlse
constant. Any imput that is varying can be integrated, if
known beforehand, through the convolution integral with the
transition matrix. The exact value of the input as a functlion

of time in the future must be known for this to be an exact

solution.
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III. METHOD OF INVESTIGATION

The extent to which‘system design can proceed in a logl-
cal, systematic, and intelligent manner 1s to a degree meas-
ured by the knowledge of the process dynamics. Thus, the
first goal in control system design must be the determination
"of the dynamic characteristics of the process to be controlled.
The dynamic characterization of a process is commonly de-
scribed by a set of first order differential equations which
are functions explicitly of time and functions of the plant
states, x(t); driving control funetions, u(t); and disturbance
functions, n(t).

In vector form,
x(t) = TLE(E), T(t), 5(t), ] (1)

In addition to this general equation the process ususlly has
limits on the permissible driving functions because of practi-
cal considerations such as saturation or power limitation.

The mathematical model of & system may be made up of
differential equations with order greater than one. Fortu-
nately, equations of higher order can éluays be treated
numerically by reducing them to a larger system of first order
equations of the form of EFquation 1. Henriei (7) has shown
lthat such reduction does not increase discretization error in

digital solutions. Since the state variable method requires
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systen eqnatiohs‘to be first order, the model must first be

reduced to a first order set of differential equations.
A, State Variable Technique

The class of control systems which have received con-
siderable attention in the literature are those described by

the following vector form of the differential equations.
x(t) = A(t)E(t) + T(t) + B(t) (2)

where A(t) is referred to as the coefficient matrix of the
process. This process 1s said to be linear and non-stationary.
Hoiever, the process is linear and stationary if A(t) is not 2
function of time. For the latter case, consider the solution

to the homogeneous vector equation where there are no driving

functions or disturbances to the system. Thus
x(t) = A X(t) . (3)

The plant starts to move at time, t,, from en initial state,
io' The solution of this homogeneous vector differential
equation is similar to the solution of a single first order

differential equation
x(t) = m x(t) | (4)

Bquation 4 has the solution
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m(t-ty)

x(t) = e X, (5)

vhere m is a constant. In the vector differential Equation 3
the term, A, is a matrix.  Before a solution of the vector

differential equation can be obtained by analogy to the first
order differential equation a definition of exponentiation of

a matrix muét be made. Since

: 00
k.k
"t = Z m"'k'.t"" (6)
k=0 )
then let
00
k. k
eAt = :E: éi%- : (7)
k=0

for which there are defined matrix operations. This suggests
that the solution for the vector differential equation is

A(t-t
x(t) = e ( O)EO (8)

The equation
A(t-t,)
®(t-t)=e O (9)

is commonly defined as the transition matrix of the system

gince

x(t) = ®(t - t,)X, (10)
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shows that if T, are the states at some initial time, t,, the
movement or transition o: the states to new posltions at t is
only a function of the initial state and the transition matrix.

The solution of the general differential equation with

driving forces and disturbances can be shown to be of the form
T(t) = ¥t - t,)0;(%) - (11)

Differentiating with respect to t gives
X(t) = A X(t) + Bt = 5)0,(t) (12)

Setting this equal to the general form of the differential
equation in Equation 2 with A not belng a function of time
makes the followlng equality necessary for Equation 1l to be

a solution.
A T(t) + W(t) + T(t) = & R(t) + &(t - £,)Cy(¥)  (13)
Cancelling terms and solving for 0,(t) gives
- t _l - - -
01(%) = j't & " (r - o) LU(r) + @(r)Jar + 0, (14)
)
Substituting this into Equation 1l gives the solp%ion as
- - t _1 - .
X(t) = ®(t-t,)0, + c(t-to)jt @ (1 - to)[T(r) + B(r) Jar

0 (15) -

The transition matrix before the integral can be taken inside
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the integral sign since 1t 18 not a function of the integrat-
ing variable. The definition of the transition matrix as an
exponential function allows consolidafion of the two transi-
tion matrices now under the integral sign. In addition, at
t = t, the transition matrix, ®(t - t,), becomes the identity
matrix. Therefore the constant O, 18 just the value of X(ty).

The final result is

t
X(t) = ot - to)f(to) + j't &t - r)[0(r) + B(7) Jar (16)
_ , o ' 4 4

vhere
A(t - t_)
Bt -t)=e ° (17)
and the vector form of the equation for which this is the

solution is
T(t) = A F(t) + T(t) + B(t) | (18)

the linear, time-stationary form of Equation 2. This powerful
equation expresses the instantaneous motion of the process 1n.
terms of the driving control signals, any disturbanc?s and the
initial states. These equations describe the exact motion of
the process 1f the original equations are an exact mathemati-
cal model of the process and 1f the control signal, the other
driving functions and the disturbances are exactly knowm.

These latter qualifications place rather stringent conditions
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on the reSulté. The exactness of thls solution is emphasized
since the approximate numerical solution of a differential
equation 18 often obtained by solving a related difference
equation which results in a state-transition equation similar

to Bquation 16.

1l. Recursign formula

The state variable solutlon developed in the last section
and shown in Equation 16 is more useful for handling in the

computer 1f the equation is placed in a recursive form. This

Disturbances also are ass;med to be zero and all inputs are
aséumed to be deterministic in nature.

Letting the present time be tk and eliminating the
disturbance term as an input to the system, Equation 16 be-

comes

: t
X(t) = ®(t - t )%(ty) + [ &t - 7)W(r)dr (19)
k k %
k .

This general form, valid for t > tk, is useful for calculating
' exact output states where more than one stage is in sequence.
However, the recursion equation 1s obtained by always predict-
ing a fixed period, T, ahead of the present time. Thus, if ¢t

is replaced by tx,1 then the recursion equation becomes
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- L tk+l
x(tk+l) = ®(T)x(ty) + It ¢(tk+1 - 7)u(r)dr (20)
k

The followlng substitutlon will be useful throughout:

T = tk‘i’l - tk (21)

. BEquation 20 is the equation wlith which the majority of the
future development 1s involved.

The recursion formula can be used for two different
sltuations that appear in control systems. When the differ-
ential equations describing the dynamles of the system are
reduced to a set of first order differential equations and
states assigned, all of the states will probably not be
measurable. If the state cannot be measured, the value of
the étate at the present is known only through having calcu-
lated it in the prediction Equation 20, starting from a known
initial condition of the state. Thus, any error in predicting
the state T seconds later tends to accumulate as any transient
conditlon persists. A state that cannot be measured is re-
ferred to as an inaccessible state, and the state that is
measurable 1s an accesslible state. Usually, through careful
cholce of states, most of the state variables in a system can
‘ be measured. Accessiblility and inaccessibility are fundamental
to the application of the state variable method, since the
method requires that the present state be known. Any error in

calculating the inaccessible state tends to accumulate durlng
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a transient inpﬁt condition and disappear during a stable
input condition to the state.

Referring again to the recursion Equation 20, the dif-
ference in using this equation for calculation of the acces-
sible and the inaccesslble states i1s the value used for
i(tk).
ment at ¢, for the state variable 1s used., If the state 1s

If the state 1s accessible, the value of the measure-

inaccessible the previously predicted value for the state is
used. The predicted values for the states X(ty ;) Just T
seconds later are exact values only if both the present states
i(tk) are nown and the driving functions u(t) are known for

the perlod.

2. Plecewlse constant inputs

The state variable technique offers the control engineer
a set of tools which allows him to predict the complete state
of his process at any future time. The prediction is exact
only if he knows the input driving functlons to the process
from the present to the time of the prediction. If the driv-
ing functlon is under his control, he has no problem. Howefer,
there are driving functions that are not under his control and
can change at any time. To allow prediction to still be
accomplished some type of approximation for the input over the
sample period must be made.

The simplest procedure 1s to assume that the input
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driving function remains constant during T in Equation 20. A
more sophisticated procedure is to linearly extrapolate the
driving function from its value at the preceding time through
the value at the initial time and on to a value at the predic-
tion time. An even more intricate procedure 1s to curve fit
the last three ilnput functlion values and represent the driving
function as.a polynomial. The last two procedures requlre
considerable computer processing which for a real-tiﬁe, shared
computer could be impractical.

The mathematical form is most éimple when the driving
functions for a given differential equation in the matrix are
measured and are assumed to remain constant at that value over
the period of prediction. The amount of error 1s dependent on
how far the driving function changes during the period. By
investigating the system it is usually possible to determine
how rapidly a driving function can change. Fo: example, if
the input to a given differential equation is the output from
another state of the system, the time constant for that state,
together with its permissible input, will limif the rate of
magnitude change possible. Chemical reactioﬁs can only pro-
gress at certain rates which can be measured and defined. In
the system to be considered later, the neutron flux in the
reactor will normally change no faster than a certain pre-
scribed rate.

The error involved by assuming that a driving function
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remains cdnstaht can be investigated. The results can deter-
mine the time available for prediction and error correction
without exceeding the control specifications of the system.
One fortunate condltion exists for the general prediction
equation. If the driving function remains constant for several
periods, any past errors gradually are reduced to zero. This
condition fits nicely the intultive idea that the most recent
measurements should be.the ones that more readily indicate the
value of the present state and that the measurement made in
the more distént past have less and less weight on the value
of the present state. Then, 1f there are no calculation
errors for a period of time, the total error diminishes.
chéosing the simple approximation of a plecewlse constant
driving function to all differential equations in the system
simplifies the control computations required from the digital

computer to a minimum number of simple manipulations.
B. Adgsptive Sampling Technique

An adaptive sampling techniéue is here defined to be that
choige of constant prediption period that will satisfy system
control speqifications over a specified range of system condi-
tions. The complete range of systenm operatioﬁ is divided into
a number of classes for which criterlia can be devised for

determining when the system is in each class. In each class
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tha prediction'period 1s to be no smaller than that required

over the range of the operation of the class. The objective

for the adaptive sampliﬁg is to use the digltal computer for

control as little as possible yet malntain the system control
specifications.

A method 1s developed here that 1s general enough to
allow use by a control engineer who has, or can develop, an
adequate mathematical model for the process. The model 1s
reduced to a_sét of first order differential equations and
then converted to Laplace Transform block diagrams. The
knowledge of the behavior of a single first order differential
equation, or similarly a single first order laplace Transform
block, for a reasonable number of deterministic inputs allows
the control engineer to analyze the control behavior of his
complete block dlagram one block at a time.

The first order differential equation to be used as the

basic building block is given by
%1(t) + L= x () = = uq(t) (22)
1l T 1 o7 1l
1 1
~ and the corresponding lLaplace Transform unit block is shown 1in

| Figure 1. A set of deterministic inputs are also shown in

Figure 1. The equations representing these inputs are

Ramp ul(t) =t, w(ty) =0 (23)
Unit step: wuy(t) = u(t-nl), ul(t;) =0, 0<n <l (24)
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. t/
Posltlve exponential: u,(t) = e L ul(t;) =1 (25)
Unit step with -t/rp ‘
negative exponential: ul(t) = e s ul(t;) =0 (26)

Since the differential equation is a linear equation, the
principle of superposition applies. The total response of the
" output for the sum of several inputs at the same time is found
by considering each input separately and summing thelr 1ndi-
vidual outputs. Thisg allows even more.variety in simulating

different inputs.

l. ZPredictlon equations for unit block

Two sets of prediction equations are required to allow
development of design parameters for decisions for the adap-
tive sampling. One of the sets of equations is an exact
solution for the output of the unit block for a given input.
The éther set of equations 1s that which uses piecewlse con-
stant approximations‘for the input and thus obtains an approx-
imate solution for the output of the unit block. This set of
equations will later be used as the control equations in the
real time diglital control. In this section, the approximate
solutions ére compared to the exact solutions for é given
input to generate design parameter curves.

The recursion equation developed earlier and given in
vector form in Equation 20 i1s the equation from which both the

exact and the approximate solutions for the output of the unit



22

v, (1)
RAMP
o to t
2u,(t)
| +
UNIT STEP
Ul(ﬂ
POSITIVE EXPONENTIAL
|
T 'g '0
iu|(')
(4 UNIT STEP WITH
I\ NEGATIVE EXPONENTIAL
. 0 "° to
l/‘l’|
1
ul(t) s + l/f. x|( )

Figure 1. The first order unlit dlock and the input
waveforms investigated
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block are obtalned. For the first order differentigl equation
given in Equation 22, the transition matrix is readily deter-

mined from the homogeneous solution to be

-t/
O(t) = e = T (27)
Substituting this into the recursion equation givas
t . (28)
-T/‘rl k+l -(tk+1-1’)/‘r
X (be,q) = e x(ty) + 2 e © 1w (r)ar

T
1 %

This equation generates both the exact and the apgioximate
solution for the output when ul(t) and ul(tk), respectively,
are used for ul(v) under the integral sign. In the épproxi-
mate case, ul(tk) is no longer a function of the integrating
| variable, so it can be brought out in front of the integral
sign. In the exact case u; is a function of the integrating
variable so cannot be brought outside of the integral.

The simulation of the unlt block is made with K and all
inputs set to unity. Thls allows universal curves to be
generated with galn factors inserted by the design engineer
for each system investigated. The percent error used for the
exponentlal curves is defined by

Xq(t,.q) - X(t ) ‘
IV ksd 1V ksl
Percent Error = .exact 2PProX. (29)

t
%y ( k*l)exact

The error is evaluated at each step. This definition of error
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automatically'normalizes the result since a11~ga1n factors

cancel., The inputs other than the exponential ones use the
deviation between the exact and the approximate outputs to

allow the generation of useful design curves.

Initiating each of the inputs at the instant of a sample
tends to maximize the error presented in the resulting curves.
Anytime there has been a choice of doing part of the measure-
~ ment or calculation two ways, the one causing the moét error
has been chosen. The resulting curves tend to be pessimistic
in their estimate of the error. Inithe case - of the unit step,
there is only error in predicting the output between the time
the step occurs and the neit'sample instant, since after that
the input is constant. A constant input makes the outﬁut
prediction for both the approximate and the exact solutions
identical. |

The prediction equations are obtained by sgbstituting
uy(t) and uy(ty), respectively, for each input investigated.
Integrating over the recursive limits glves the following set

of recursive prediction equations for the unit block transfer

function shown in Figure 1l:

Oase a: uy(t) = t, ul(to) = 0, xl(to) =0
Exact solution

/v

- . - =T
xl(tk+1) =e 1 X (ty) + (KT = 77)(1 - @ /71) + T (30)
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Approximate solutlion

-1/

-T/T
_ 1
X1 (Bgay) =

1 xl(tk) + kT(1 - e

) (31)
Oase b: uy(%) = u(t - n7), ul(t;) =0, xl(to) =0

Bxact solutlon,

~(1-n)T
() = 1-e (-n)t/ny -2

t/Tp,
Qase c: ul(t) = e , ul(to) =1, xl(to) =1

Exact solution,

T
' -T/7q : T xt/r, T/1, =T/7y
xl(tk+l) = e x(tk) + :ET%_EZ e p(e P e )
L T (33)
Approximate solutlon,
| -~T/r kT/~ -1/
X1(ty,q) = e 1 x(%) + e P1-e | 1) (34)

, up(tg) = 0, uy(3) = 1, x3(t,) = 0
Exact solution,

. |
-1/ T -kT/r =T/t -T/74
X (ty,;) = e x (t) + 7 P P-e )

= | (35)

Approximate solution,

: -T
Xy (ty,q) = e X (ty) + e P(1 - ¢ /Tl) (36)
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2. Design parameters

' The recursion equations deseribing the exact solution and
the approximate solution of the output state for the four
input cases are placed 1n‘forms that minimize the number of
variables. Wherever possible, the sample period and the time
constants, T, were.put in ratio form, T/r. This is a non-
dimenslional ratio which is easy to use in the general appllca-
tlon of these curves. The abscissa of each of the curves
éenerated has been made the ratio of the sample period to the
time constant of the unit block, T/r,. The ordinate is either
gsome form of the percent error or the deviation of the approx-
imate value from the exact value of the output state. Flnally,
the family of curves are generated by the remalning variables
in each of the cases. For instance, in all of the exponential
1nputs,‘the families of curves are for different values of the
ratio of the unit block time constant to the exponential time
constant, Tl/Tp. | |

The approximate solution may have either an accessible or'
an inaccessible output. If the output 1s accessible, then the
present state, xl(tk), of the system 1s obtained from the
exact solution when prediétion was made from the previous
state. The exact solution gives the same result as a measure~
ment does tor the present state. If the oufput is inaccessi-
ble, then the present state, xl(tk), is obtained from having
predicted x3(ty,;) approximately from the previous state.



27

a. up(t) =t The ramp input to the unit block

eventually results in a fixed amplitude deviation between the
approximate output and the exact output for a given sample
period. The time in which the deviation ceases to increase
is dependent upon the time constant of the unit block, Ty
Since the abscissa of the curves is ‘1‘/1'1 a family of curves
show the gradual increase ln amplitude at each tk following
the initiation of the ramp. PFigures 2 and 5 show two differ-
ent scales for the abscissa and display the deviation of the
approximate output from the exact output. The curves desig-
nated as t, show the deviation at the end of the xth perlod
Just kT seconds after initiation of the ramp. For the acces-
sible case, the deviation 1s reduced to zero agailn at the end
of each period by a measurement. The result 1s that the
deviation at the next sample 1s again the same value as shown
at t; for a glven value of T/fl. Thus, only one curve; that
designated t; 1s used for the accessible output state, whille
all of the curves are used for the inaccessible output state,
and the deviation at kT seconds is indicated by the curve
deslignated as t,. A dashed line in both of the figures 1ndi-
cates the asymptotlc value of the deviatlion at t,,. Since the
simulation in the digital computer was carried oniy to k = 20,
further specific curves are not included.

b. ul(t) = u(t - nT) The unit step input to the unit

block results in a deviation of the output state at the next

sample instant. The deviation is dependent on the time



Figure 2. Amplitude deviation of the approximated output from the actual
output state of a unit block at sample instants, tk, following
the initiation of a ramp input. Range 1
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Figure 5. Amplitude deviation of the approximated output from the actual
output state of a unit block at sample instants, ty, followlng
the initlation of a ramp input. Range 2
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constant of the unit block. ‘As the sample period is made
longer, the output has time to grow larger. The deviation, as
a funection of T/Tl and the time after a sample that the step
starts, is shown for two ranges of T/'rl in Pigures 4 and 5.
The paiameter, n, varies between O and 1 where the step occurs
at t7 for n = O and at ti for n = 1. As previously indicated,
~there is no further deviation between the approximate solution
and exact solution for the output after the first séﬁple
following the unit step.

c. up(t) = et/*p The posifive exponential input to

the unit block eventually results in a constant error between
thg approximate output andAthe exact output for given T/¢l and
Tl/Tp. The exponential input reaches this asymptotic error in
a time dependent on the time constant of the unit block.

Since the abscissa is in terms of T/Tl, the small values of
the abscissa take more sample periods to reach the asymptotlc
error. For T/'r1 greater than 0.5 the asymptotié error is
reached in three or four sample periods. The comparlisons for
the asymptotic errors, resulting for the inaccéésible and
accessible output states, are shown for two fanges of T/-rl in
Figures 6 and 7. These two figures are included for compara-
tive purposes only. The inaccessible state for two ranges of
T/Tl and a more complete selection of ratios, Tl/Tp, are given
in Pigures 8 and 9. Similarly, the accessible output state is

covered in Figures 10 and 11. It was not easy to display in a



Figure 4. Amplitude deviation of the output state of 2 unit block at the
next sample instant followlng the input of a unit step nT seconds
after the last sample. Range 1
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Figure 5. Amplitude deviation of the output state of a unit block at the
next sample instant following the input of 2 unit step nT
seconds after the last sample. Range 2
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Mgure 6. Comparison of approximation errors for the accessible and
inaccessible output states of a unit block with a positive
exponential input. Range 1
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Flgure 7. Comparison of approximation errors for accessible and inaccessible
output states of a unit block with a positive exponential input.
Range 2
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Flgure 8. Approximation errors for an inaccessible output state of a unit
block with a positive exponential input. Range 1
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Flgure 9. Approximation errors for an inaccessible output state of a unit
block with a positive exponential input. Range 2
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FMigure 10. Approximation errors for an accessible output state of a unit
block with a positive exponential input. Range 1
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Figure 11. Approximation errors for an inaccessible output state of a unit
block with a positive exponential input. Range 2
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general way the error at early sample periods prior to reach-
ing the asymptotic error. However, the comparison of the
accessible and inaccessible output states may prove useful,
and 1t is true that the error is always smaller than the
asymptotic value in the earlier sample periods.

-t/Tp

d. uy(t) = e The unit step followed by an

exponentially decreasing decay has characteristics quite
similar to that of the positive exponential. TIwo character-
1stics are different. PFirst, the error 1s negative. The
decay makes the approximate solution for the output state have
an input that is always equal to the exact input at the sample
instant, but at all other times the lnput is greater. From
the error definition of Equation 29, the error 1s negative.
Second, an interesting result from this input is that the
error 1s constant from the very first sample for the lnacces-
sible state. The error, then, does not have to be called an
asymptot;c error since i1t is constant as a funcfion of time.
The curves for two ranges of T/Tl for the 1lnaccessible case
are shown in Pigures 12 and 13. The results for the accessi-
ble case did not reduce to conditions that could be meaning-
fully displayed on a graph. At the first sample, the error
was the same as that for the inaccesslible case. After that,
the error decreased continually for the twenty samples simu-
lated on the computer. PFor this type of input, then, the

Inaccessible state is the only one included here for use.



Flgure 12. Approximation errors for an inaccessible output state of a unit
block with a unit step and negative exponential decay as an
input. Range 1
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Figure 15. Approximation errors for an inaccessible output state of a unit
block with a unit step and negative exponential decay as an
input. Range 2
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C. DNonlinear, Time-varying Systems

The previous discussion has been limited to linear, time
1nvar1ant'processes. Unfortunately for the control engineer
these characteristics seldom exist. If a linear approximation
1s used to describe a process that is not linear or time
stationary,:the mejor questlon 1s the validity of the approxi-
mation. |

Consldering Equation 2 agaln, the transition matrix is

now 2 function of time and the initizal time, .t The general

o
form would be &(t, to) instead of that obtained in the linear
case ®(t - t,). Even though &(t, t,) can also be expressed
as an exponential as in the time-invariant system, the result
1s not nearly as satisfactory. There results no formula for
®(t, t,), although Tou (19) indicates that the transition
matrix can be expressed as an 1nfin1te'seriés of successive
integrals. This is not a convenient form with which to work,
and general procedures to derive the transition matrix
apparently have not yet been obtained.

A non-linearity found in many processes.shows up as a
. product of two of the state variables in the set of first
order differential equations describing the plant. Solutions
for values of some of the states are needed before all equa-

tions can be solved. A simultaneous matrix solution can only

be obtained if some iterative technique is used that converges
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to the correct values for the states., There 1s obvious
computing time disadvantages of an iterative procedure for a
real-time shared digital cdmputer for system control.

There 1s a type of plant that can be described by a set
of first order differentlal equations which, in matrix form,
can be reduced in order and thus simplified. In general, this
system is oﬁe that has parts of the system separated in space
from other parts. In a continuous chemical plant thé solution
may pass through one tank with a catalyst which wlll cause a
certaln reactlon to take place. When the solution leaves that
tank and proceeds to the next step the reaction will stop be-
cause of absence of the catalyst. Mathematically this part of
the system can be described by an independent sub-set of the
set of equations describing the complete plant. The sub-set
éan be solved first and the results inserted into the rest of
the equations. An example considered in Sectlion IV uses a
nuclgar reactor as a source of neutrons to activate a2 radio-
isotope. No more radioactive isotopes are produced when the
sample 1s removed from the reactor environment. Similarly, a
mass lsotope separator 1s used to separate the samplé strean,
The behavior of the separator and 1ts controls have no effect
on the production of the radioactive nuclides in the reactor.
These, then, are independent sets of equations and should be
able to be solved independently of the complete set.

The advantage of uncoupling or reducing the order of the
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set of equations i1s that one of the states involved in a
product of state variables may be in an independent sub-set of
the equations. As a consequence, the state can be determined
and act as a constant, and the non-linearity is removed. The
tool 1s convenient for use on such non-linear equations.

The independent sub-sets of the complete set are easily
recognized when the equations are put in matrix form. If a
g X q block of elements are found in the coefflcient matrix
with all other elements in the q fows belng zero, then these
q equations are independent of the other equatlons in the
matrix. One caution is that the driving functions must be
checked to see that no states of controls from outside the q
rows are encountered. Since the set of first order differ-
ential equations describing the system can be placed in any
sequence to make up the matrix, the best combinatlon of zero

elements in the reduction of the order of the matrix can be

obtained.
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IV. EXPERIMENTAL IMPLEMENTATION

The adaptive sampling technique using state varlable
prediction for control has been used in the design of 2 con-
trol system for an experiment in a nuclear reactor. The
purpose of the experiment is to investigate the decay schemes
of radioisotopes continuously produced and removed from the
reactor at a rate approximately equal to the half 1life of the
particular radioisotope. The effect is to produce a radio-
isotope with an-infinite 1lifetime. The purpose of the control
system is to maintain the rate of arrival of the radioactive

atoms equal to the rate ofAdecay from the isotope target.
A. Description of Process System

A schematic representation of the system is shown in
Figure 14. The nuclear reactor core provides a'source of
neutrons when the reactor is opérating. These neutrons are
in close assoclation with a sample in a nearby experimental
facility and thus turn a certain.portion of the atoms into
radioactive‘atoms by neutron capture. The éolid sample 1is
contained in a chamﬁer-that is at a high vacuum and 1s
vaporized at a controlled rate by a heater. The vapor flows
out of the chamber in the reactor through a'tube approximately.

one inch in diameter and twelve feet long. An ionization
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Pigure 14. Schematic representation of continuous mass
lsotope separation of a radloactive sample
from a nuclear reactor
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source for a mass isotope separator is located at the end of
this transfer line. The ion source ionizes the sample vapor
and accelerates the resulting ions through a constant poten-
tial into the magnetic field of the separator. The separator
allows isotopes with different masses to be collected at 4if-
ferent physical locations in the plane of the target at the
receiving end. At this point the physicist may examine the
radioisotopes that have been produced with the approprlate
physical tools.

The sample is usually non-radlioactive when inserted into
the reactor. The bulldup of radioactivity depends on the time
history of the neutron flux in the reactor, the neutron
capture cross section of the atoms and the half 1life or decay
coﬁstant of the radioactive nuclides. The vapor from the
heated sample will gradually bulld a pressure that will céuse
other véporized‘atoms to be transported down the line and into
the lower pressure area of the ion source and méss isotope
separator. The vapor enters a plasma in the ion source that
1s sustained there by a filamentary heating eléhent, a magnetic
field and appropriate element potentials. The vapor becomes
ionized when ehcountering the high temperature of the plasma.
A small opening at the end of the ion source, beyond which are
located appropriate extracting, accelerating and focusing lens
potentials, allows continuous extraction and acceleration of a

portion of the ionized radloactive sample. The lons are
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accelerated into the magnetic fileld of the mass isotope
separator, and the curvature of the beam along its flight path
in the field depends on the mass of the lons. The parent atom
normally capiures one neutron to form the radioacfive daughter
atom jJust one mass unit heavier. The parent and daughter
atoms can be separated sufficlently in space to allow separate
manipulation by the experimentalist. This action is similar
to that in a mass spectrometer used to ldentify different
atomic masses in analytical measurements, except that the mass
isotope separator provides a sufficient quantity of atoms to
allow physical or chemical experiments. A simplified word
block dlagram shown 1ln Pigure 15 glves a reasonablé flow dla-

gram of the interactlons that take place in the process.
B. Derivation of Mathematical Model

The process system naturally divides into fhree parts
for studying 1ts mathematical character: the first is forming
of radioactive atoms iIn the sample; the second”is producing
vapor from the solld sample and ﬁransporting'the vapor to the
inlet of the ion source of the mass isotope separator; the

third 1s converting the non-ionized semple to an ionized form

in the ion source and accelerating it through the separator
magnetic field to a target. The first objective wlll be to
provide a set of first order differential equations that
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adequately describe the complete process system and the

interactions between the variables.

1. Dynamics of sample radioactivity

The differential equations that describe the behavior of
a sample 1in neutron flux are well worked out in the literature
(8). The two equations that describe the process for this

system are

N{t t
W) = - w(t) + o MeNI(t) - HELLEL (57)

BB = - o u(0)g(s) - FE Sy (38)

vhere N(t) = number of radioactive atoms at any time,

M(t) = number of parent atoms at any time,
#(t) = neutron flux, neutrons/cmz-sec,
¢ = neutron capture cross section of the sample,
cm?,
A = decay constant of the sample, sec'l,
t = time, secs, and . |
w(t) = flow of vaporized atoms, atoms/sec.

In Equation 37 the first term on the right is the rate of
disappearance of radioactive atoms by decay, the second term
is the rate of appearanc§ of new radioactive atoms from cap-
ture of neutrons, and the third term is the rate of disap-

pearance of radioactive atoms due to vaporizing and transport-
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ing away the solid sample. In Equation 38 the first term is
the rate of disappearance of the parent atoms due to the form-
ing of radloactive atoms, and the second term is the rate of
disappearance due to transporting away the vaporized sample.

Several approximations for these equations are appropri-
ate when the conditions of the lrradiations and the particular
samples used in this system are considered. It is expected
that a sample will seldom be smaller than 100 grams which is
approximately 1025 atoms of the parent. The maximum vaporiza-
tion rate that can be tolerated as an input to the mass iso-
tope separator is approximately 1015 atoms/second. Of this
total vaporization rate the number that will be radioactive
is no greater than 107 atoms/second for the half lives,
neutron flux and sample cross sections involved. Thus, the
ratio ¥/M is no greater than 10"6. In Equation 38 both terms
are negligible compared to the other time constants in the
system. Thus M(t) 1s no longer a function of time but rather
a constant equal to the total sample. In the case of a sample
that is very small or a combination of a very small sample and
a long irradiation time, this apﬁroximation is no longer true,
and the second differential equation must bé considered to
glve a complete description of the system.

In Equatlion 37 the rate of change of the number of radio-
active atoms in the sample due to vaporization of the radio-

active portion compared to the total radioactive atoms present
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in the entire sample can similarly be shown to be negligible.
The resulting differentigl equation that describes the
dynamic character of the radioactivity in a2 reasonable sized
solld sample in the reactor is

2%%.1.:'- A N(t) + oM #(%) (39)
where M = the #otal number of atoms in the solid sample. The -
gseful number that can be derived from the solution of this
equation is the ratio N/M since it is the portion of the total
vapor ﬁhaf is radioactive as 1t is vapbrized'from the solid
sample.

The variation of the ratlo N/M by the time the vapor
enters the ion source is the truly useful quantity, and this
ratio can be modified by the transport characteristics of the
vapor ddwn the transport line and the decay of radloactive
atoms occurring after the sample atoms have left the neutron
flux. From the transport characteristics developed in the
next section a modification of the ratio 1s given by another
differential equation 1n R, where R is the ratio of radioac-
tive to parent atoms at the time the vaporized sample enters

the lon source. Thlis differentlial equation is

-}s‘l'd t - .
BWe) - Logge) 4+ e — 2 de-) (40)
T12 T12 :
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where Tip = the response time of pressure at the lon source
to a change in pressure at radiation volume, sec
Tg = transport lag from the radiation volume to the

ion source, sec, and

R = ratio of number of radioactive to parent atoms
at the ion source.

=AT
The term, e d, is the exponential decay of the radioactive

portion after leaving the reactor. This transport lag is a
function of the molecular welght of the sample and the rate

at which the sample is being vaporized. The molecular weight,
of course, i1s constant for a glven sample except for the
radloactive atoms which are one mass unit heavier than the
parent atoms. The rate of flow varies no more than 2 to 1,
since the lon source for the isotope separator will not
operate over a greater range of flow variation. The result is

that this term i1s nearly a constant for a glven sample.

2. Dynamics of sample transport

The irradiation of 2 solid sample, and then devending
upon its vapor pressure to transport it to the ion source,
requires that the rest of the transport 1ine'through which the
vapor 1s passed be above the temperature that would allow
plating out at the sample vapor pressure. The loop from the
irradiation chamber to the inlet of the ion source wlll be
kept at a constant temperature above that necessary for the

control range in vaporizing the sample. Typical operating
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temperatures‘range from 300°C to 675°C to allow the proper
vaporization rate for some of the rare earth chlorides and
metals expected to be used. The control range of the tempera-
ture is from 20°C to 30°C to provide the proper range of flow
rates to the ion source_for a glven sample. This range of
operation vaporizes from 7 x 1014 to 1.5 x 1015 atoms/sec
typically for the size samples expected. Table 1 lists infor=-
mation for some Specif;c compounds to be used. The sensi- '
tivity of vaporization to temperature, the minimum operating
temperature and the range of operation necessary to provide
the desired atoms per second a2t the lon source are listed.

The variation of the vaporization rate of a sample with
temperature 1s exponential. However, over the small tempera-
ture range of operation, the approximation that it is incre-
mentally linear is very good as can be seen in Figure 16,
showlng the calqulated vaporization rate versus temperature
for GdCl3. The range of operation required in fhe ion source
of the m#ss isotope separator is indicated in the figure.

The sample transport dynamics divide naturally into two
parts, the vaporization of the sémple from the solid and the
transport of the vapor to the ion source. The rate of vapori-
zatlon of the sample is controlled by the rate at which power
is put into a heater surrounding the sample beins irradiated
in the reactor. There is a lag between applying the power to

the heater and the transfer of the heat into the sample which
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Table 1. Vaporization characteristics of sample compounds

Kg, | AT,

Compound Minimum Incremental Operating

operating vaporization temperature

temperature sensitivit range

(°c) (atoms/°C (°c)
Y015 501 2,45 x 1013 12
NaCly 672 2.40 x 101 13
SmC1, 431 1.80 x 10%7 30
BuCl; 487 2,55 x 1013 21
Gd01, 612 2.55 x 1013 21
DyC1, 613 2.90 x 1013 18
ErCl; 563 2.20 x 1013 25
Y¢Cls 666 2.50 x 1013 22
IuCl; 660 3.00 x 1013 18
Eu (metal) 317 2,50 x 1013 22

ralses its temperature. An ildeal example was solved for heat
transfer in the case of an infinitely long cylinder of
FBuropium metal, that is, assuming no heat flow along the
cylinder. An initial equilibrium temperature was eétablished
at the cylinder wall and all temperatures within the cylinder
were assumed to come to this same temperature., The surface
of the cylinder was then gilven a step in temperature. The
plot in PFigure 17 shows the change of temperature within the

cylinder as a function of cylinder radius and time for any
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material with the diffusivity of Europium metal. Iittle exact
information is available on the diffusivity of the rare earth
chlorides. However, in general thelr diffusivities are
reduced about a factor of 20 from that of the metals. Thus,
they would have a similar shape, but a factor of 20 times each
of the time values shown. It would be desirable to build a
sample heater arrangement to investigate these properties for
proposed samples. This has been done for the flow system as
wlll be explained.

If it 1s assumed that the vaporization will occur from
the top millimeter or so of surface, i1.e., that the vaporiza-
tlon is mainly a surface phenomenon, then it appears that a
first order time lag will describe the vaporization as a
function of sample heater power. In differential equation

form this becomes

dATs(t K
ot 15 R ATg(t) + =2 APG(t) (41)
dt T6 Te
where AT_ = incremental variation of sample ﬁemperature at

operating temperature levels, °C,

APH = incremental variation of sample heater power at
operating power levels, watts,

T = time constant of the temperature change from a
change in heater power, sec, and

K6 = effect of sample heater power on sample tempera-
ture, °0/watt. '

In order to relate APH to the measurable parameter AIH, the
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incremental heater current change, the heater resistance in

the operating range is assumed to remain constant at Ry. Then
2

wWhere IHm = minimum operating heater current, amps, and

RH = operating resistance of heater, ohms.

The transport of the sample from the point at which it
18 a vapor into the trensport line and to the 1on source inlet
1§ complicated. The pressures and the rates of flow 1nvolved
cover a region that 1s partially laminar flow and partially
flow by molecular diffusion. Thus, it is difficult to calcu-
late and provide an accurate mathematical model of this part
of the system. To provide a reasonable mathematical model, an
experimental arrangement was set up using gas flow instead of
vapor tovstudy the dynamics., The results indicate the trans-
port lag is in the range from approximately 0.3 seconds to 1.5
seconds, and the first order time constant which fairly weil
fepresents the system behavior ranges from approximately 0.5
seconds to 1.5 seconds, both numbers varying with the molecular
welght of the gas. This results in a differential equation
describing the dynamics of the flow as

dap (t) _ 1

K
12 4
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vhere Apé': incremental pressure at the lon source inlet,

microns,

ATy = incremental temperature variation of sample at
operating levels, °C,

Tio = the time constant of response of the pressure
at the ion source for a change of temperature
of the sample, sec,

K12 = effect of sample temperature on pressure at the

~ion source, micron/°C, and
T4 = transport lag, sec.

5. Dynamics of mass isotope separator

The ipn source of the 1sotope separator has five varia-
bles that effect the total isotope current received at the
target of the‘separator. These variables are ion source fila-
ment current, lion sourcé magnet current, focus voltage,
extraction voltage, and the rate at which sample 1s being
inserted in vapor or gas form into the source. One of these
variables, the sample flow rate, 1s already varying according
to the sample vapor created back in the reactor experiment
location. The speed with which the flow réte changes 1s quite
slow compared to the speed of the other varlable responses in
the isotope separator. O0f these variables, experiments show
that the ion source filament current varies the total isotope
separator current over a2 wider range than any of the other
variables without affecting other system conditions.

A family of curves plotting total isotope separator

current versus ion source filament current for varlous con-
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stant values of sample flow into the ion source (in terms of
pressure) allows evaluation of the constants Kl and K2 which
relate fllament current and pressure inlet to 1sotope total
current flow in the separator. This family of curves shown
in Figure 18 can be ust with the same analytical techniques
commonly used with curves of triode vacuum tubes. The desira-
bility of incremental variables up to this point then becomes
apparent. The 1ncremeptal inputs Apg and AIf can be used in
direct computation for an incremental change in total isotope

separator current AI,. Thus,

AL (t) = KjAIp(t) + Kopg(t) (44)
aLy
where K, = (ﬁ;)Ps
3l

B2 = (55001,

AIf = incremental ion source filament current, amps,
and

AIt = incremental isotope separator total current, amps,

constant,

constant,

and the constants Ky and K, are determined from the family of
curves in Figure 18. for the range of operatién acceptable to
the lon source, the approximation‘that Kl and K> are constant
instead of varlable is a good one. It should be noted that
there is a response time of about one~half second for the
effect on isotope separator current of a change in lon source

filament current. This is considered negligible compared to

other time constants in the system and 1s thus disregarded.
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At this point in the development of the system equations,
a departure from incremental variable descriptions is desira-
ble since the final equation will determine how many atoms of
the total 1sotopé separator beam are radioactive and the nun-

ber of these that are decaying each second. Thus, the total

beam current is
I4(t) = I + ALL(t) ‘ (45)
vhere It = total isotope separator current, amps
Itm = minimum desired operating isotope separator
current, amps.
In terms of the two varlables already described, then
Iy(t) = Iy, + KlAIf(t) + K2Aps(t) (46)

which completes the dynamics for the mass isotope separator.

4, Combined dynamics at the target

The.total number of atoms per second of the saﬁple
arriving at the target of the mass isotope sepafator has been
determined, and the ratio of radiosctive to total atoms in
thlis beam as a function of time has also been described. The
pertinent information 1s the product of these two since it is
desired to control the number of radioactive atoms per second

arriving at the target. Thus

Ip(t) = R(t) [Tgy + KjALe() + ExApg(t) ] (47)
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where IR‘= radioactive atoms/sec arriving at target.

If the number of radloactlive atoms on the target at any one
time is NT’ then the differential equation describing the rate

of change of Np with time is just the rate at whlch they are
arriving on the target less the rate at which they are decay-

ing. Thus,

dHp(t)
dt

= KjoIg(t) = ANg (48)

where Klo = 6.3 x 1018 atoms/amp.

Finally, the desired output of the system is an average decay
rate which 1s Just the number of radloactive atoms on the

target at any time times the decay constant. Thus,
D, (t) = A Np(t) (49)

where D, = decay rate of the radioactive atoms from the
target, disintegrations/second.

Making the substitutlons of D, into the differential equations
for Np results in the followling differential'equation for the
decay rate as a function of the other varliables.

dDa(t)

= « AD (t) + AK,oR(t)[I RyA,(8) + KAp_(t)
— 2 10R(8) [ Tep + KyaIp APs ](50)

This completes the set of differential equations which will be

used to mathematically approximate the system. The equatlons
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are listed here again for easy reference.

4%%31 = = A N(t) + oMeB(t) (39)
R R
dAgg(t) = - g; AT (t) + gg APy (t) | (41)
Loglt) . - ang(0) + % at,(t - 7) (43)
dnzf_'t) = = A D () + AEoR(8)[ Iy + Kj8I0(8) + K Apg(t) ]
(50)

where the followlng interrelations are noted:

Ig(t) = Igp + KjALL(t) + KAp (%) (46)
AI4(t) = K AT (t) + K,Ap (t) (44)
AP (%) = RAIF(t) + 2Ly RpAly(8) (42)

These differential equations can also be represented in
block diagram form using Laplace transforms. This is shown in
Figure 19. Due to the nonlinearities present, particularly
the product, R(t)It(t), of two time varying functions, it 1is
diffigult to design a control system directly using this form

of the block‘diagram. Nevertheless, the process deseribed in
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this form is useful for certain control concepts.
C. Solution for System Equatlions

The set of differential equations derived to describe
the process has both nonlinear relations and transport lags
between some of the variables. Some of the individual equa-
tions, however, are either linear or incrementally linear over
the range of operation. These equations are those that occur
first in the space separation of this type of process and thus
are unperturbed by variables occurring further along in the
process. The process of génerating the mathematical model of
this system has shown that some of tﬁe equations can be solved
independently of the others. Nevertheless, in the interest of
generality, the equations will be investigated as a set of
equations to show how the sequentlal solutions evolve.

The set of differential equations developed in Section B
can be placed in matrix form which tends to make certaln
methematical manipulations easier as well as méking it easier
to see such things as nonllneariiies and time-varying coeffi-
cients. The form of the matrix necessary td represent this

system 1is
X(t) = A(X, t)X(t) + B(X, t)x(t - Td) + u(t) (51)

where x;(t) is the typical state varlable at time t, A and B



are time-varying nonlinear coefficient matrices, and T(t)

contains the time-varying driving functions.
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Using the varia-

ble designations already adopted, the form of the fifth order

system describing the plant in matrix form 1s

/ . \
N(t)
AT (t)
Apg(t) | =
R(t)
D_(t
L g (t) )
/ N /
-\ 0 0 0 0| [N(%)
o-%g 0 0 0| [aT4(%)
0o 0 -3 0 0| |Apg(t)
T12
0 0 o - ol IR(%)
T12
\o 0 [mloxlzn(t)] LAk (T +K AT () ] -z\) \Da(t)
/ , N\ N\ / \
0 0O 0 0 Of |N(t =Ty, oM Z(t)
K
0 0 0 0 Of |ar(t - 1) =S arg(t)
+ o 72 0 0 of [apg(t -1y 5
-A‘I’d 12
; 0 0 0 0 R(t - '1y) 0
T12
0 0 0 0 O |Dp.(t - 7y) 0
\ / ka d / \ /

The element 853 shows nonlinearity with two of the state

variables multiplied together.

(52)

h

The element a54 Indicates a

time-varying coefficient since one of the inputs is multiplled

by one of the state variables.

The element b32 indicates that
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a tranSport lag is involved with the determination of one bf
the state variables. The element b41 indicates both transport
lag and the time varlation of T4 in determining one of the
state variables.

| The first two equations in the matrix are not functions
of the last three state varlables, since there are 2 x 3
blocks of zeros in the upper right hand cormer of both the
coefficient matrices, A and B. Thus, these two equafions can
be separated from the other three resulting in the formation
of two matrices, a process referred to as uncoupling. The two

matrices fhen are

N(t) - 0 N(t) oM g(t)
R = 1 + ,;K_6_ & (53)
AT _(t) o - e AT (%) e AP (t)
and
’ Y /. N /

. 1 : )
Aps(t) | - ;'-]'.—2' 0 Of |Aps(t)
R(t) = 0 - ;%-2- ol |r(%)
\133(1-.) LA oK) R (%) ] DA, (Top+E 81e(t) T =2 | |Dg(t)

/ \ ‘ : /\ /
/ \ : '
i:i?- AT (t - 74)
12
"'LTd
+ ﬁ 0 N(t - Td) (54)
\ o )

It 1s necessary to solve the 2 x 2 matrix in Equation 535 first
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and then substitute values for AT (t - 7&) and N(t - Td) into
the matrix in Equation 54 as driving functions. This is
reasonable since they are now known values not unknown varia=-
bles. ‘ |

| Further examination, of course, shows that these two
resulting matrices can again be broken apart or uncoupled
again requifing the solution pf one equation and substituting
the result into the next before it can be solved. This results
in a step by step solution of one equation at a time for this
fifth order system of differential equations.. The complicat-
ing problem is that the'solutions of each of the equations
becomes more and more complex as the time-varying driving
functions accumulate from one equation to the next.

The sequence 1s as follows:

1. Solve the first two equations for N(t) and AT (t) by
substituting in the driving functions @g(t) and A?H(t) respec-
tively. These are ordinary differential equations which can
be solved by any of the usual techniques for these types of

equations once the driving function 1s knowm.

N(t) = -A N(t) + oM g(t) (55)
A'Ts(t) = - ;12 AT (t) + % APH(‘b) . (56)

2. Using the solution of AT (t), determine ATs(t - Td) and
substitute as a driving function into the third differential

equation,
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K
ADg(t) = - == Ap (1) + =2 AT_(t - 1) (57)

12 12

5. Using the solution of N(t), determine N(t - Td) and
substitute as a driving function into the fourth differential

equation,
: -}\Td
R(t) = - =+ R(t) + &—— N(t - 1) (58)
712 M Tio da

4, Using the solution of Aps(t) and R(t) from parts 2 and 3
above, substitute into the last differential equatlion as
driving functlions

D_(t) = -AD,(t) + AR R(8) [KoAp () + KjAIL(%) + Itm](sg)
The solution of the last equation then gives the varliation in
the decay rate of the radloactive isotope from the target of
the mass 1sotopé separator. This decay rate varles with the
three inputs #(t), Iy(t), and If(t) of which the latter two
are available for control variation by the control system.

This process is an example of the type discussed in

Section III-C. The process is described by a set of nonlinear
differential equations with time-varying coefficients. The |
nature of the process, where an entity starts at one end of
the system, passes completely through the system, and then
disappeérs, i1s such that the nonlinear system can be uncoupled

into pleces that in smaller sectlons behave as a linear system.
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D. System Control

The design of the system for this experiment is an
optimum control problem similar to that described by Tou (19).
The control policy or law for the optimum control system is
the sequence of inputs, {m(i)}, 1 =0, 1, 2, **+-, N - 1, which
minimizes the expected value of a performance index subject to
Equation 18 for any arbitrary initial state X(t,). The per-

formance index for this experiment is glven as

- x(t (60)

Iy = x(tk+l)exact k+1)approx.

where Iy 1s the performance index that 1s to be minimized in N
steps of the driving function inputs. The driving functions
in this system can bring the performance index to a minimum
within each step of the control system so N = 1.

The development of the adaptive sampling design method in
Section III gave no consideration to the problem of stability.
According to Kalman and Bertram (10), stability in a linear
system depends only on the transition matrix.(Equation 8) of
the system. Stabllity cannot be brought about or destroyed by
a particular cholice of the initial state or the system input
signal. A stationary linear system is stable if and only if
every element of the transition matrix tends to zero as N
tends to infinity where N 1s the number of times that the

transition matrix 1s multiplied times itself. For a constant
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transition matrix, a stationary linear system is stable if all
roots of the characteristic equation of the transition matrix
are less than unity. This condition is identlcal with the
result that the poles of the z-transform of the input-output
relétions of the system must lle within the unit circle. The
statlonary transition matrix is only obta;ned where the
pattern of the sampling operations repeats in a perliodic
fashlon. .

The fifth order set of differentlal equations that
describe thls system are a nonlinear set which cannot be
analyzed with the elementary stablility criterion described
above. However, when the system is uncoupled and each equa-
tion is solved in sequence there are flve linear first order
transition matrices. Each of these are of the form, e~4, with
the value of u being greater than zero 1ln every case., Thils
means that the scalar transitlon matrices all have values less
than one and, since they are a stationary transition matrix
within each moderf operation, the control system 1s claimed
to be stable for any values of cross section and half life of
samples 1n the experiment. With'these few comments the
stability of the system will be given no further consideration

as a part of this development.

1. Multilevel control equations

Two control driving functions are shown for the system in

Figure 19. One of the inputs can be used as a course adjust-
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ment, making the fine adjustment by the second input a much
simpler task. Other objJectives also may be realized. The
necessity of solving nonlinear differential equations may be
eliminated. The error assoclated with the approximation of
the.prediction of the output states may be reduced. The
matrix form of the fifth order system describing the plant is
given in Equation 19. One of the nonlinearities here is
indicated by element ag3 where two state variable R(t) and
Aps(t) are multipllied together. This product is the ratio of
radloactive to non-radloactive atoms times the pressure of the
vapor at the inlet to the lon source. Since the pressure at
the outlet of the lon sourée in the 1sotope separator 1is
negliéible compared to the lon source inlet pressure, the
inlet pressure, Apg, 1s incrementally proportional to flow.
The product is incrementally proportional to the number of
radloactlive atoms flowlng into the ion source per second.
Since thg purpose of the control system is to méinta1n~con-
stant the number of radioactive atoms arriving at the target
of the isotope separatof, the possibility of méking constant
the number of radioactive atoms ﬁer second flbwing into the
ion source is quite attractive.

The block diagram of the experimental system dynamlcs
shown in Figure 19 shows an interesting relationship between
the product of the two state varlables R and Apg and the

product of the two state variables N/M and ATg. Since N/M and
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AT are both modified by the transport lag and time constant
of the transportation of the vapor from the sample chamber to
the lon source, thelr products would be proportional to that
of R and Apg 1f the decay of the radloactivity indicated by
the.term, e"d, 15 elther constant or negligible. Since the
transport lag has been measured experimentally and found to be
no greater than 1.5 seconds in the worst case, the minimum
half 1life of 15 seconds makes the decay between the feactor
and the lon source negligible. In addition, the transport lag
is likely to vary no more than a factor of three for the range
of molecular welghts in samples to be run in the experiment.
The product ATSN/M is incrementally proportional to the
number of radioactive atoms per sécond being vaporized from
the sample, Just as RAps 1s incrementally proportional to the
rate of arrival of radioactive atoms in the lon source. Since
the control driving function, APy, varies the number of atoms
per second belng vaporized from the sample, the first control
loop can now be defined. From the measured value of the
sample temperature and fhe calculated value of'fhe number of
radioactive atoms in the sample a prediction ban be made using
the approximation equations developed earlier. The product of
the two predicted values can be held nearly constant by chang-
ing the value of the sample heater current. In addition to
the approximation error for the state variable N/M there is a

small but finite time required for the calculations after the
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measurement_of the state, ATg. This delay can be as small as
10 milliseconds and as large as 500 millliseconds depending on
the program and the availability of the computer. Since
sample times for control will range from about 5 seconds apart
to more than 30 seconds apart, the computational delays will
produce small errors.

Since the transport lag from the sample to the ion source
ls so short compared to the half 1life of any sample to be used,

a good approximation is that

R(t) = %’El ' (61)

With this approximation the block diagram for the control loop
defined in the last paragraph i1s shown in Figufe 20.

The fine control can be defined by examining Equation 59.
Using the approximation of Equation 61 and noting that the
product of the two state variables is now 2 constant, the

equation becomes

Dy(t) = -AD, () + Ak [ C + EEL(mAT (8) + 1,0 ] (62)

where

C = K2Aps(t)gi&ﬂ- | (63)

Bquation 62 can be shown in an equivalent block diagram form
in Figure 21. The control of the ion source filament current,

AIf, is carried out identically to that of APH of the first
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control loop.

These two control loops fix the control system. The
control equations require the prediction of approximate solu-~
tions for the output states of N/M and D, and of exact solu-
tion of the output state, ATy, 1in tgrms of the input current
to the sample heater, Aly. These results are shown in the

following equations.

Htgyp) = e Reey) + F - e a(ey) (64)

Da(tiyy) = o7 Dy lty) + Kyo D KoAPg (be) (1) (65)
¢ Jlt) (R8T 5(6) + Typ) J(1 = &™)

ATs(tesn) = e-T/T6ATs(tk) + KAPy(ty ) (1 - e-T/T6)(66)

Using these equations together with the block diagram required
values can be oﬁtained for APH(tk) and AIf(tk) in terms of the
set poinfs, Rd and D4, the measured and calculated values of
the present states, the predicted value of the state of N/M,
and known constants. These results are obtained by straight-
forward algebra. The required values of APH(tk) and AIf(tk)
to keep constant both the number of radioactive atoms per
second vaporized in the sample and the number ﬁf radioactive
atoms per second decaying at the target are obtalned as

follows:
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Ry - %(tkﬂ)[qn +am(t, )] =0 (67)

A

Since
AW(ty, ) = KgATo (1) (68)

the control equation for the first loop is obtained by combin-

ing Equation 66, 67, and 68 and solving for APH(tk)req
R
- d - “n

APH(tk)req. - -T/T6 N -4776

1/ (69)

e ATs(tk)

B -T/7
Rg(L-e = ©)

First, %(tk+1) must be predicted and the Equation 69 must be
calculated.

For the second loop, the control block diagram indicates
Dg = Dylty,,) =0 . (70)

which together with Equation 65, gives

Dg - 1D, () + Kyo[ Kphpg (tyc)fy(ty)
(71)

s Mo (kAT (6 + 1) T - e™HY =0

Solving for the required AIf(tk) to make Bquation 71 valiad

gives the control equation
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-AT
Dy - e D (t,) K I
Alp(t,) = d al k’ - .Q.Ap (t,) - _tm
k'req. = 1 . AN K, sk TE]
1K10( - e )ﬁ(tk) (72)

2. Application of adaptive sampling

According to the adaptive sampling procedure the opera-
tion of the experiment is divided into classes according to
sampling requirements. The first step is ﬁo determine the
typres of waveforms that can be expected as inputs to each unit
block. The second step is to select the design curves from
Section III-B-2 according to the expected input and to the
measurabllity (accessibility or inaccessibility) of the output
state. The graphs are used to estimate the error caused by
the approximation of the predicted output state by plecewlise
constant inputs if the input is time varying during the sample
interval. Sincg controlled inputs are held conétant during a
sample interval, they can be predicted exactly for an accurate
mathematical model. Errors due to the approximated mathemati-
cal model in the system and to unrepresented disturbances that
might occur in the system can aléo influence the choice of |
sample rate.

The physics experiment control system has-been divided
into five modes of operation. The considerations and require-~
ments for entering and leaving each mode, the calculations and
measurements requlred for each mode and the error linvestiga-

tlon to establish the sample period for measurement and
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control are discussed in the followlng sections.

a. Preliminary Operating Mode Conditions required

for operating in this mode are that (1) the maximum number of
radioactive atoms per second being vaporized from the sample
at maximum permissible sample temperature is less than the
desired rate for taking data in the experiment and (2) the
measured neutron flux is less than 0.1 per cent of that
obtained at the sample'for full power reactor operation. The
first condition indicates that no dynamic control is necessary
in this mode. The second conditlon assures that no calcula-
tions are necessary since the bulldup of radioactivity in the
sample 1s negliglble compared to that at full power operatlon.
The only measurement necessary in thls mode is that of the
neutron flux.

The sample period for thls mode 1s chosen to fulfill the
requirement that the neutron flux not be allowed to go signif-
lcantly higher than 1 per cent of full power without being
able to switch to the next mode. The reactor normally will go
up in power on a positive exponential during a normal startup
at no faster than a 30 second'"périod," l.e., Tp = 30 seconds.
The power can go up a factor of 10 between samples and stlll
meet the required specification. The sample perlod need be no
shorter than 90 seconds to satisfy this requifement. Since
this is a trivial computation time for the computer, making

the sample period some smaller number, such as 30 seconds,
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might be desirable. The mode is shifted to the Startup Mode
when the neutron flux i1s found to be greater than 0.1 per cent
of that of full reactor power for a given samplé.

b. Startup Mode Conditions required for operating in

this mode are that (1) the maximum number of radioactive atoms
per second belng vaporlzed from the sample at maximum permis-
sible samplé temperature is less than the desired rate for
taking data in the experiment and (2) the measured neutron
flux is greater than 0.1 per cent of that obtained at the
sample for full power reactor operation. The first condition
indicates‘that no dynamic control is necessary in this mode.
The second condition indicates that calculations are necessary
to allow keeping track of the number of radioactive atoms
generated in the sample by the neutron flux. The only meas-
urement necessary in thls mode is the neutron flux.

The ratlo of radioactive to non-radioactive atoms in the
sample is calculated by using Equation 64. A constant has
been previously calculated in the computer for”the number of
atoms per second vaporlzed when the sample is at the maximum
permissible temperature. When this constant is multiplied by
the results of the first calculation and then 1s compared to
the desired number of radioactive atoms per second for the
given experiment, a decision can be made whether or not to
take data.

The sample rate in this mode depends on the error that is
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acceptable in the calculation of the ratio of radioactive
atoms to non-radioactive atoms in the sample. Thls output
state is inaccessible, and the input is time varying between
sample periods. The maximum positive exponential period
expected is still 30 seconds as indicated in the Preliminary
Operating Mode. For an example, 2 sample with a radioactive
half life ofllS seconds has ™1 = 15 seconds, Tp = 30 seconds
and Tl/Tp = 0.5 with ap acceptable error being 10 per cent.
The design graph for this group bf parameters is found in
Pigure 10. From the graph the ratio T/Tl is found to be 0.64
for this case. Solving for T, the sample period 1s found to
be 19.4 seconds. For a second example, 2 Sample with a radio-
active half 1ife of 1000 seconds has Ty = 1000 seconds, Tp =
30 seconds and Tl/Tp = 33 with an acceptable error still being
10 per cent. The design graph for this group of parameters l1ls
found in Figure 11. Prom the graph the ratio T/-r1 is found to
be 0.02 for thié case. Solving for T, the sample period is
determinéd to be 20 seconds. The similarity of the sample
periods for the same lnputs does not always hold true, since
the shapes of the curves vary. The error of 10 per cent is a
maximum value and holds as long as the reactor 1s on the 30
second period. As the reactor perlod becomes longer the error
is reduced until at level reactor power the efror will disap-
pear,

The mode 1s shifted to the Transient Two Level Control
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Mode if or when the radiocactive atoms per second being
vaporized are sufficient in number to take data. The mode is
shifted back to the Preliminary Operating Mode if both the
number of radloactive atoms being vaporized is insufficient
and the reactor power drops below 0.l per cent of full power.

¢. Transient Two Level Control Mode Conditions

required fof operating in this mode are that (1) the number of
radiocactive atoms per second being vaporized from thé sample
1s sufficlent to allow data to be taken for a sample tempera-
ture within normal operating limits and (2) the calculated
value for N/M is more than 3 per cent higher or lower than the
saturated activity at the measured neutron flux. This mode of
opération requires control for the most dynamlc condition of
the experiment. The neutron flux may be varylng and the
radioactivity in the sample has not built up to saturation
level. The measurements required for use in the calculatlions
are the neutron flui, the incremental sample teﬁperature, the
incremental sample heater current, the incremental pressure at
the lon source inlet, the incremental ion sourde filament
current, and the decay rate of tﬁe radioactive atoms at the
separator target.

Tﬁe control block diagrams used in this mpde are those
shown in Figures 20 and 21. The calculations are thosé shown
in Equations 64, 69, and 72 and anyvconversions necessary to

transmit the correction to the experiment in 2 proper form.
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Two épecific inputs of the neutron flux variation with
time will be considered, the same positive exponential input
used 1n the first two modes and the effect of moving control
rods into the reactor for fifty seconds creating a ramp in the
neutron flux with a slope of 1 per cent/second. The exponen-
tlal lncrease results in the same error as found in the
previous modes aséuming the error of 10 per cent 1s still
satisfactory. For the half 1life of 7, = 15 seconds the sample
period was found to be 10.4 seconds. The design graph for use
with the ramp input is found in Figure 2. This graph is used
by picking a value of sample perlod and finding the deviation
resulting. For convenlence the périod is chosen as 19.4
seconds to see if the deviatlon gives a greater error than the
exponential signal did. The ramp will last for 50 seconds
which is less.than three sample periods. The amplitude devia-
tion/T for t = 3 and ‘1‘/-r1 = 0.64 is found to be 0.45. The per

cent error compared to the initial amplitude of unlity 1s glven
by

- (Amplitude deviatlon/T) x Ramp gain x 100
Per cent error = Tnitlal Amplitude

Using the parameters above glves

Per cent error = 0.45 x 19.4lx 0.01 x 100 _ 8.7%

This is no greater than the error caused by the positive

exponential so 1s consistent for the original requirement for
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an error of less than 10 per cent.

The mode is shifted to the Transient One Level Control
Mode if or when the calculated value of N/M deviates less than
3 per cent from the saturated value at the measured neutron
flux. The mode is shifted back to the Startup Mode if there
are insufficient radiocactive atoms with which to take data.

d. Transient One Level Control Mode Conditions
required for operating in this mode are that (1) the neutron
flux must not change more than 5 per cent from that when the
mode was entered and (2) the ion source filament current must
be in a proper operating range for control. The latter
requlirement is implicit in all modes of operation using con-
trol but is emphasized here since any variation in N/M due to
chaﬁge in neutron flux nOW'must‘be corrected by the lon source
filament current, instead of through changing the sample
heater current. Thls mode has less dynamic range of operation
thaﬁ the'previous one since the time history of‘the neutron
flux and the buildup of radioactivity in the sample has become
reasonably stable. The measurements required for use in the
calculations are the neutron flu#, the incremental pressure
at the ion source inlet, the incremental 16ﬁ source filament
current, and the decay rate of the radloactive atoms at the
separator target.

The control block diagram used in this mode is that shown

in Pigure 21. The value of C can now be time varying over a
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small range of operation since control is no longer beling
maintained in the control loop shown 1n Figure 20. The
calculations are those shown 1n Equations 64 and 72 and any
conversions necessary to transmit the correction in an
appropriate form to the experiment.

The neutron flux does not vary significantly in this mode
of operation so approximation errors are small. There can be
small, step inputs of neutron flux for slight repositioning of
control rods for shimming purposes. Any change of neutron
flux greater than 5 per cent wlll shift operation out of the
mode. The control provides the last trimming of operation as
the experiment and reactor are coming into a stable, steady
state operation. The mode 1s shifted to the Transient Two
Level Control Mode 1f the neutron flux varies more than 5 per
cent from that flux with which the mode was entered or if the
lon source fllament current reaches the limit of its operating

range.

e. Monitor Mode The reactor and the experiment may

reach a very stable mode of operation requiringhlittle or no
correction in the experiment confrol to maintain satisfactory
experimental conditions. If this condition occurs the com-
puter should not be called upon to make calculations that are
no longer required. If the graphs were used to calculate
errors from expected deviations, the sample period would turn

out to be very long. Disturbances or changes in between
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samples become a distinct possibility. The occurrence of such
changes early in the sample period could cause considerable
deviation before the next sample measurement.

The Monitor Mode 1s operated by a function of the
computer referred to as a Clock Interrupt. The Clock Inter-
rupt 1s an automatic callback for quick interrogation of
experiment conditions requiring very little calculation time
at regular periods of time. These clock periods start at 12.8
milliseconds and are avallable at other longer periods. This
shorter sample period would perform no control but would check
the values of the three most critical variables, the neutron
flux, the total isotope separator current and the decay rate
of the radioactive nuclides at the isotope separator target.
Any significant drift from their values when the Monitor Mode
was entered will cause the operation to shift back either to
the Transient One Level Control Mode or the Transient Iwo

Level Control Mode, depending on which mode is required.
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V. CONCLUSIONS AND RECOMMENDATIONS

The design curves from this study provide a means for
design of effective control for an experiment and at the same
time assist in making efficient use of a digital computer
shared by other experiments. The state variable technique is
used as both a design method for obtaining the design curves
for adaptive sampling and for predicting the state for the
control of the system. The ease with which the state variable
technique accommodates changing sample intervals shows why the
technique is able to unify examination of non-uniform, aperi-
odic, and constant interval sampling methods. The method of
adaptive sampling developed here is shown to be easily applied
whether the states of the process are measurable (accessible
states) or not measurable (inaccessible states).

An interesting and useful characteristic is demonstrated
for process systems which have particles or components that
orlginate at the input of the process, are carried through the
process in space and time and finally are expelled from the
process never to return. These ﬁrocesses are commonly
described by a set of nonlinear differential equations with
time-varying coefficlents. Solving this set qf equations
simultaneously is both a2 long and d4ifficult task. For proc-
esses with the characteristics described above this set of

nonlinear differential equations can be uncoupled and the
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resulting‘sets solved in sequence. In the experiment on which
the adaptive sampling is demonstrated the set of uncoupled
equations prove to be individual first order differential
equations that are linear.

System control can be changed in the digital computer by
merely replacing the program stored in the computer, demon-
strating one of the major advantages the digital computer has
over an analog system designed to provide the same cbntrol.

If the required control program l1s already stored in the com-
puter, the control system can be ~hanged in a time that is
short compared to the time constants of the process. The
stored programs can be changed to new programs with a minimum
of time and effort when the experiment is changed. The pre-
stored program potentially provides a wide dynamic range for
a given process that seems highly unlikely to be accomplished
even by an adaptive analog control system.

Further development of the adaptive sampliﬁg technique 1s
desirable. A more sophisticated method can be developed for
making the declsion to change from one mode to'another. The
method here uses the magnitudes éf the state variables and the
inputs to the process.for mode swltching deéisions. The
derivatives of each state are avallable with 1little addltional
calculations. The rate of change of the state variables would
gilve an added anticipation of a need for greater attention

from the computer. The development of the combination of
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clock interrupts for monitoring and experimental interrupts
for control appears to be one of the most fruitful areas for
further development. A good balance between these two func-
tlons could reduce even fufther the demands on the digital
computer by a process with given control specifications. The
investigation of stabllity was mentioned only briefly.
Stability and optimum control studies open wide the avenues

of research using the techniques discussed here.
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